

Введение в обработку текстов

Лекция 6 Лексическая семантика

Возможные взгляды на семантику

- Лексическая семантика
 - -значение индивидуальных слов
- Композиционная семантика
 - -как значения комбинируются и определяют новые значения для словосочетаний
- Дискурс или прагматика
 - -как значения комбинируются между собой и другими знаниями, чтобы задать значение текста или дискурс

План

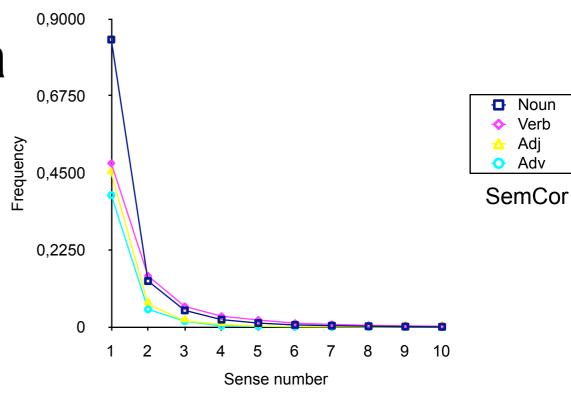
- Основные понятия
 - слова и отношения между ними
 - словари и тезаурусы
- Вычислительная семантика
 - Разрешение лексической многозначности
 - Семантическая близость слов
 - Некоторые современные направления

Основные понятия

- Значение слова и многозначность
- Омонимия VS многозначность
 - -ключ
 - -платформа
- Метонимия
 - Я три тарелки съел
- Зевгма
 - -За окном шел снег и рота красноармейцев
- Типы омонимов
 - –омофоны (луг-лук, плод-плот)
 - -омографы (м'ука мук'а, гв'оздик-гвозд'ик)

Отношения между словами

- Синонимия
 - Машина / автомобиль
- Антонимия
 - большой / маленький, вверх / вниз, ложь / истина
- Обобщение и детализация (hyponym and hypernym/superordinate)
 - машина транспорнтое средство
 - яблоко фрукт
- Меронимы (партонимы) и холонимы
 - колесо машина



Многозначность на практике

- Text-to-Speech
 - -омографы
- Информационный поиск
- Извлечение информации
- Машинный перевод
- Эмоциональная окраска

• Закон Ципфа (Zipf law)

WordNet

- База лексических отношений
 - содержит иерархии
 - сочетает в себе тезаурус и словарь
 - доступен on-line
 - разрабатываются версии для языков кроме английского (в т.ч. для русского)

Категория	Уникальных форм	
Существительные	117,097	
Глаголы	11,488	
Прилагательные	22,141	
Наречия	4,601	

- http://http://wordnet.princeton.edu/
- http://wordnet.ru/

Формат WordNet

The noun "bass" has 8 senses in WordNet.

- 1. bass¹ (the lowest part of the musical range)
- 2. bass², bass part¹ (the lowest part in polyphonic music)
- 3. bass³, basso¹ (an adult male singer with the lowest voice)
- 4. sea bass¹, bass⁴ (the lean flesh of a saltwater fish of the family Serranidae)
- freshwater bass¹, bass⁵ (any of various North American freshwater fish with lean flesh (especially of the genus Micropterus))
- 6. bass⁶, bass voice¹, basso² (the lowest adult male singing voice)
- 7. bass⁷ (the member with the lowest range of a family of musical instruments)
- bass⁸ (nontechnical name for any of numerous edible marine and freshwater spiny-finned fishes)

The adjective "bass" has 1 sense in WordNet.

bass¹, deep⁶ - (having or denoting a low vocal or instrumental range)
 "a deep voice"; "a bass voice is lower than a baritone voice";
 "a bass clarinet"

Введение в обработку текстов 🗐 ВМК МГУ

WordNet: отношения между словами

Relation	Also called	Definition	Example
Hypernym	Superordinate	From concepts to superordinates	$breakfast^1 \rightarrow meal^1$
Hyponym	Subordinate	From concepts to subtypes	$meal^1 o lunch^1$
Member Meronym	Has-Member	From groups to their members	$faculty^2 \rightarrow professor^1$
Has-Instance		From concepts to instances of the concept	$composer^1 \rightarrow Bach^1$
Instance		From instances to their concepts	$Austen^1 \rightarrow author^1$
Member Holonym	Member-Of	From members to their groups	$copilot^1 \rightarrow crew^1$
Part Meronym	Has-Part	From wholes to parts	$table^2 ightarrow leg^3$
Part Holonym	Part-Of	From parts to wholes	$course^7 \rightarrow meal^1$
Antonym		Opposites	$leader^1 \rightarrow follower^1$

Relation	Definition	Example
Hypernym	From events to superordinate events	$fly^9 \rightarrow travel^5$
Troponym	From a verb (event) to a specific manner elaboration of that verb	$walk^1 \rightarrow stroll^1$
Entails	From verbs (events) to the verbs (events) they entail	$snore^1 \rightarrow sleep^1$
Antonym	Opposites	$increase^1 \iff decrease^1$

Введение в обработку текстов

Иерархии WordNet

```
Sense 3
bass, basso --
(an adult male singer with the lowest voice)
=> singer, vocalist, vocalizer, vocaliser
   => musician, instrumentalist, player
      => performer, performing artist
         => entertainer
            => person, individual, someone...
               => organism, being
                  => living thing, animate thing,
                     => whole, unit
                        => object, physical object
                           => physical entity
                               => entity
               => causal agent, cause, causal agency
                  => physical entity
                     => entity
Sense 7
bass --
(the member with the lowest range of a family of
musical instruments)
=> musical instrument, instrument
   => device
      => instrumentality, instrumentation
         => artifact, artefact
            => whole, unit
               => object, physical object
                  => physical entity
                     => entity
```


Как "значение" определяется в WordNet

- Множество синонимов называется синсет
- Пример

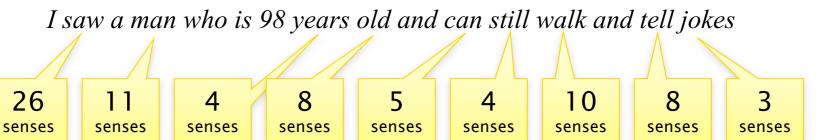
```
from nltk.corpus import wordnet
for synset in wordnet.synsets('chick'):
    print synset.definition
    print [lemma.name for lemma in synset.lemmas]
```

```
young bird especially of domestic fowl
['chick', 'biddy']
informal terms for a (young) woman
['dame', 'doll', 'wench', 'skirt', 'chick', 'bird']
```


Вычислительная лексическая семантика

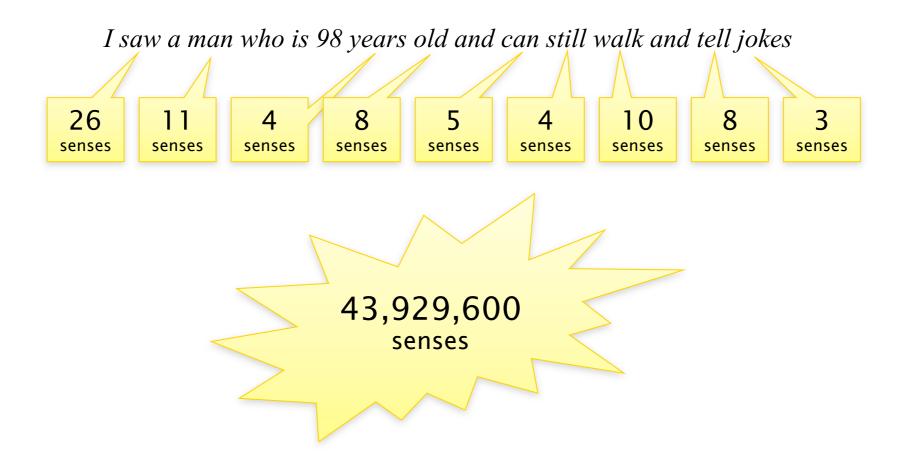
- Разрешение лексической многозначности
- Семантическая близость слов

Введение в обработку текстов 🗐 ВМК МГУ



Трудность разрешения лексической многозначности

I saw a man who is 98 years old and can still walk and tell jokes



Трудность разрешения лексической многозначности

Трудность разрешения лексической многозначности

Разрешение лексической многозначности (РЛМ)

- Word Sense Disambiguation (WSD)
 - определение значения слова в контексте
 - обычно предполагается фиксированный список значений (например WordNet)
- Сводится к задаче классификации
- Отличается от задачи разграничения значений (word sense discrimination)

РЛМ: варианты

- Определение значений только заранее выбранных слов (lexical sample task)
 - line hard serve; interest
 - Ранние работы
 - Обучение с учителем
- Определение значений всех слов (all-word task)
 - Проблема разреженности данных
 - Невозможно натренировать отдельный классификатор для каждого слова

Признаки

- Должны описывать контекст
- Предварительная обработка текста
 - –параграфы, предложения, части речи, леммы, синтаксический разбор?
- Признаки в словосочетаниях с позициями
- Множества соседей

- Проблема разреженности языка
 - Использовать семантическую близость (далее)

Введение в обработку текстов

Пример

An electric guitar and bass player stand off to one side, not really part of the scene, just as a sort of nod to gringo expectations perhaps.

Collocational features			
word_L3	electric		
POS_L3	Ш		
word_L2	guitar		
POS_L2	NN		
word_L1	and		
POS_L1	CC		
word_R1	player		
POS_R1	NN		
word_R2	stand		
POS_R2	VB		
word_R3	off		
POS_R3	RB		

Bag-of-words features			
fishing	0		
big	0		
sound	0		
player	1		
fly	0		
rod	0		
pound	0		
double	0		
runs	0		
playing	0		
guitar	1		
band	0		

Алгоритмы

- Наивный байесовский классификатор
- Классификатор на основе списков принятий решений

Наивный байесовский классификатор

• Выбор наиболее вероятного значения

$$\hat{s} = \operatorname*{arg\,max}_{s \in S} P(s|f)$$

• По правилу Байеса

$$\hat{s} = \operatorname*{arg\,max}_{s \in S} \frac{P(s)P(f|s)}{P(f)} = \operatorname*{arg\,max}_{s \in S} P(s)P(f|s)$$

• Наивное предположение об условной независимости признаков

$$\hat{s} = \underset{s \in S}{\operatorname{arg\,max}} P(s) \prod_{j=1}^{n} P(f_i|s)$$

Обучение наивного байесовского классификатора

- Метод максимального правдоподобия
- Другими словам, просто считаем

$$P(s_i) = \frac{count(s_i, w_j)}{count(w_j)} \qquad P(f_j \mid s) = \frac{count(f_j, s)}{count(s)}$$

- Алгоритм прост в реализации, но
 - Исчезновение значащих цифр > использовать сумму логарифмов вместо произведения
 - Нулевые вероятности 🗦 сглаживание

Вопрос на засыпку

• Как сделать классификатор для задачи определения значений всех слов (all-word task)?

Списки принятий решений

- Последовательность тестов над признаками
 - аналогично условным выражениям в программировании
 - каждое условие определяет конкретное значение
 - по умолчанию: наиболее частое значение

Rule		Sense
fish within window	⇒	bass ¹
striped bass	\Rightarrow	bass ¹
guitar within window	\Rightarrow	bass ²
bass player	\Rightarrow	bass ²
piano within window	⇒	bass ²
tenor within window	⇒	bass ²
sea bass	⇒	bass ¹
play/V bass	⇒	bass ²
river within window	\Rightarrow	bass ¹
violin within window	\Rightarrow	$bass^2$
salmon within window	\Rightarrow	bass ¹
on bass	\Rightarrow	bass ²
bass are	\Rightarrow	bass ¹

Обучение списка принятия решений

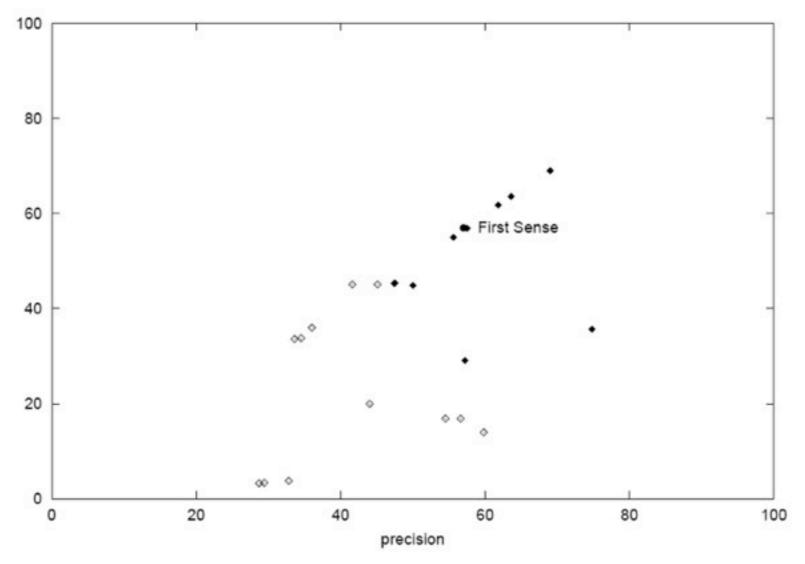
- Yarowsky (1994) предложил метод:
 - считаем все пары признак-значение
 - сортируем в порядке убывания логарифмического отношения правдоподобия

$$\left| log \left(\frac{P(Sense_1|f_i)}{P(Sense_2|f_i)} \right) \right|$$

• Отличается от стандартного метода обучения списков принятия решений (Рассел, Норвиг 2006)

Введение в обработку текстов 🗐 ВМК МГУ

Методы оценки


- Внешние (in vivo)
 - Машинный перевод с/без РЛМ
- Внутренние (in vitro)
 - Применение к размеченным данным (SemCor, SENSEVAL, SEMEVAL)
 - Измерение точности и полноты в сравнении со стандартными значениями
- Нижняя граница
 - Выбор случайных значений работает плохо
 - Более сильные границы: наиболее частое значение, алгоритм Леска
- Верхняя граница: согласие экспертов
 - 75-80 для задачи определения значений всех слов со значениями из WordNet
 - до 90% с менее гранулированными значениями

Наиболее частое значение

• Сравнение методов на SENSEVAL-2

• McCarthy et. al. 2004 ACL - поиск наиболее частого значения по неразмеченному корпусу

Методы основанные на словарях и тезаурусах

- Алгоритм Леска (1986)
 - Взять все определения целевого слова из словаря
 - -Сравнить с определениями слов в контексте
 - -Выбрать значение с максимальным пересечением
- Пример
 - pine
 - 1. a kind of evergreen tree with needle-shaped leaves
 - 2. to waste away through sorrow or illness
 - cone
 - 1. A solid body which narrows to a point
 - 2. Something of this shape, whether solid or hollow
 - 3. Fruit of certain evergreen trees
 - Определить значение: pine cone

Варианты алгоритма Леска

- Упрощенный (Simplified Lesk)
 - Взять все определения целевого слова из словаря
 - -Сравнить со определениями словами в контексте
 - -Выбрать значение с максимальным пересечением
- Корпусный (Corpus Lesk)
 - –Включить предложения из размеченного корпуса в сигнатуру каждого значения
 - -Взвесить слова через IDF
 - -IDF(w) = -log P(w)
 - –Показывает лучшие результаты
 - -Использовался как нижняя граница на SENSEVAL

Самонастройка (Bootstrapping)

- Yarowsky (1995)
 - Начать с маленького множества данных, размеченного вручную
 - Натренировать список принятия решений
 - Применить классификатор к неразмеченным данным
 - Переместить примеры в которых мы уверены в тренировочное множество
 - Повторить!
- Требует хорошей метрики уверенности
 - логарифмическое отношение правдоподобия
- Эвристики для получения начальных данных
 - одно значение на словосочетание
 - одно значение на дискурс

Алгоритм Yarowsky

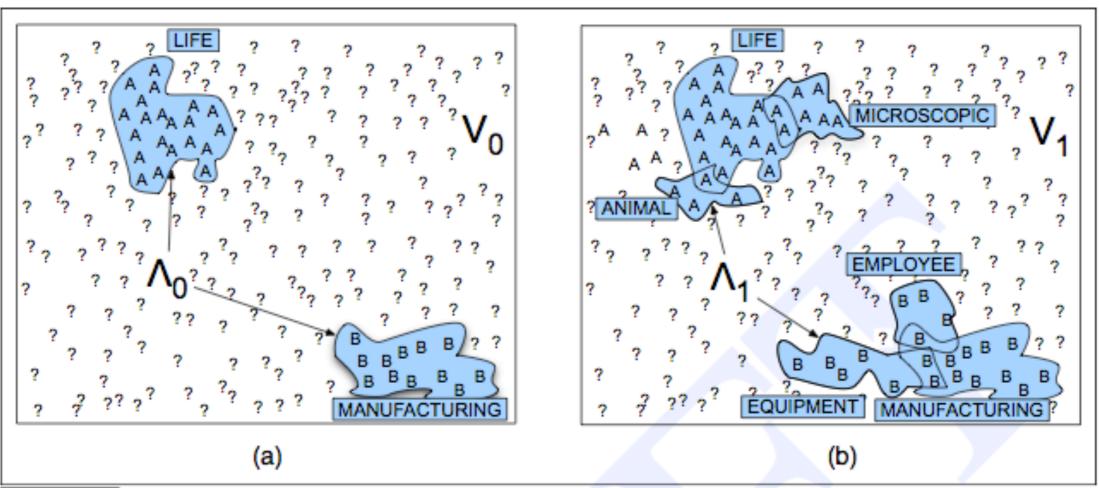


Figure 20.4 The Yarowsky algorithm disambiguating "plant" at two stages; "?" indicates an unlabeled observation, A and B are observations labeled as SENSE-A or SENSE-B. The initial stage (a) shows only seed sentences Λ_0 labeled by collocates ("life" and "manufacturing"). An intermediate stage is shown in (b) where more collocates have been discovered ("equipment", "microscopic", etc.) and more instances in V_0 have been moved into Λ_1 , leaving a smaller unlabeled set V_1 . Figure adapted from Yarowsky (1995).

Семантическая близость слов

- Подходы на основе тезаурусов
- Подходы на основе статистики

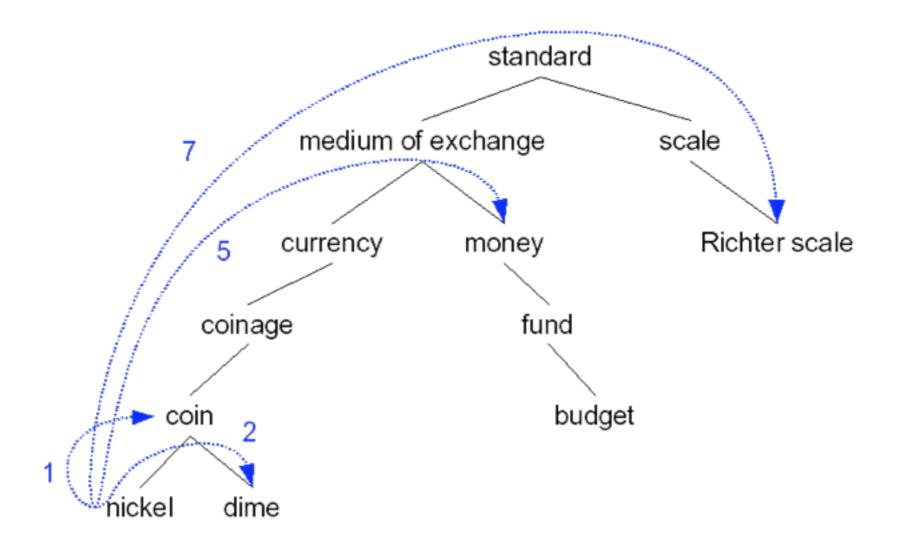
Мотивация

- Хороший признак для многих задач
- Позволяет бороться с разреженностью языка
- Имеет прикладное применение
 - поиск опечаток (с учетом семантики)
 - поиск плагиата
 - извлечение информации

Подход на основе тезаурусов

- Близость по пути
- Метод Резника
- Метод Лина
- Расширенный алгоритм Леска

Семантическая близость слов в тезаурусах


- Можно использовать любые отношения между словами
- На практике используется иерархическая структура и иногда описания значений
- Похожесть (similarity) VS связность (relatedness)
 - машина и топливо: не похожи но связаны
 - машина и велосипед: похожи

Близость по пути в иерархии

• Два понятия семантически близки, если они находятся рядом в иерархии

Ьлизость между словами

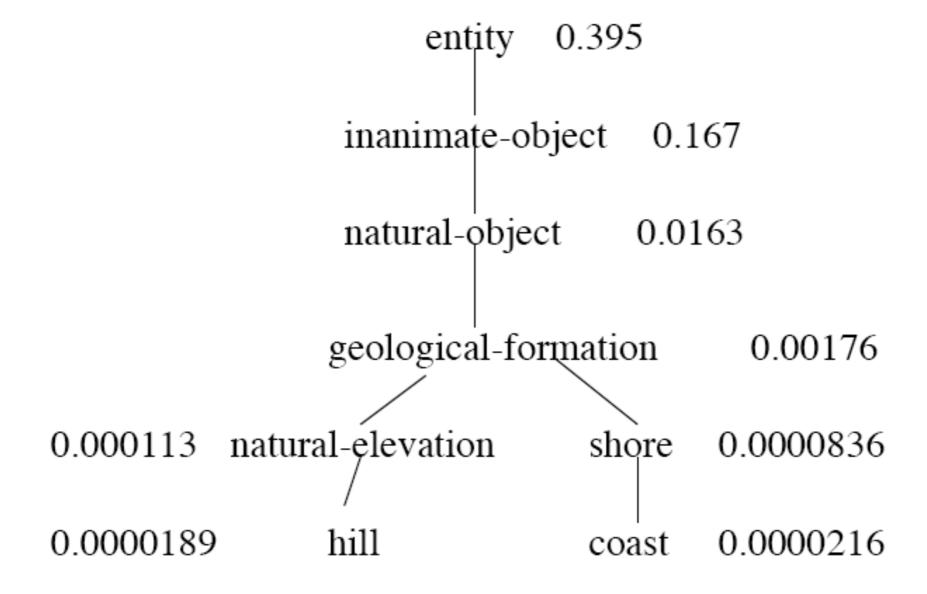
- Только что мы посчитали близость между ПОНЯТИЯМИ
- Перейдем ко словам
- simpath(c1,c2) = $-\log$ (pathlen(c1,c2))
- wordsim(w1,w2) = maxc1 \in senses(w1),c2 \in senses(w2) sim(c1,c2)

Другие методы

- Сначала немного определений...
 - -Информационное содержимое
 - -Наименьший общий предок

Информационное содержимое

- Information content
- Определим Р(С) как:
 - -Вероятность, что случайно выбранное слово в корпусе является экземпляром класса С
 - -P(root)=1
 - -Чем ниже узел в иерархии, тем ниже вероятность


$$P(c) = \frac{\sum count(w)}{N}$$

Информационное содержимое

• Расширяем иерархию WordNet вероятностями Р(С)

Определения

- Информационное содержимое
 - -IC(c)=-log(P(c))
- Наименьший общий предок
 - LCS (c1,c2)

Метод Резника

- Resnik (1995)
 - -Чем больше общего между понятиями, тем более они похожи

```
-sim_{resnik}(c1,c2) = IC(LCS(c1,c2)) =
                  = -log P(LCS(c1,c2))
```


Метод Лина

- Dekang Lin (1998)
 - -При вычислении близости также надо учитывать различие между концепциями
- Идея может быть выражена как

$$sim_{Lin}(c_1, c_2) = \frac{2 \times log(P(LCS(c_1, c_2)))}{log(P(c_1)) + log(P(c_2))}$$

$$sim_{Lin}(hill, coast) = \frac{2 \times log(P(geological_information))}{log(P(hill)) + log(P(coast))} = 0.59$$

Расширенный алгоритм Леска

- Две концепции похожи, если их описания содержат похожие слова
 - Drawing paper: paper that is specially prepared for use in drafting
 - Decal: the art of transferring designs from specially prepared paper to a wood or glass or metal surface
- Каждому общему словосочетанию длины n назначить вес n²
- paper + specially prepared: 1+4 = 5

Резюме: методы, основанные на тезаурусах

$$\begin{split} & \text{sim}_{\text{path}}(c_1, c_2) \ = \ -\log \text{pathlen}(c_1, c_2) \\ & \text{sim}_{\text{Resnik}}(c_1, c_2) \ = \ -\log P(\text{LCS}(c_1, c_2)) \\ & \text{sim}_{\text{Lin}}(c_1, c_2) \ = \ \frac{2 \times \log P(\text{LCS}(c_1, c_2))}{\log P(c_1) + \log P(c_2)} \\ & \text{sim}_{\text{jc}}(c_1, c_2) \ = \ \frac{1}{2 \times \log P(\text{LCS}(c_1, c_2)) - (\log P(c_1) + \log P(c_2))} \\ & \text{sim}_{\text{eLesk}}(c_1, c_2) \ = \ \sum_{r,q \in \text{RELS}} \text{overlap}(\text{gloss}(r(c_1)), \text{gloss}(q(c_2))) \end{split}$$

Проблемы с подходом, основанном на тезаурусе

- Не доступен для многих языков
- Много слов пропущено
- Используются только обобщения и детализация
 - -Хорошо работает для имен существительных
 - Для прилагательных и глаголов намного хуже
- Альтернатива
 - -статистические подходы

Статистический подход к оценки близости слов

- Firth (1957): "You shall know a word by the company it keeps!"
- Пример

Бутылка tezgüino стоит на столе Все любят tezgüino Tezgüino делает тебя пьяным Мы делаем tezgüino из кукурузы

- Идея:
 - из контекста можно понять значение слова
 - надо взять контекст и посмотреть, какие еще слова имеют такой же контекст

Векторное представление контекста

- Для каждого слова из словаря определим бинарный признак, показывающий встречаемость вместе с целевым словом **w**
- $w=(f_1,f_2,f_3,...,f_N)$
- w= tezgüino, v1=бутылка, v2=кукуруза, v3=матрица
- w = (1,1,0,...)

Идея

- Задать два слова через разреженный вектор признаков
- Применить метрику близости векторов
- Два слова близки, если векторы близки

	arts	boil	data	function	large	sugar	summarized	water
apricot	0	1	0	0	1	1	0	1
pineapple	0	1	0	0	1	1	0	1
digital	0	0	1	1	1	0	1	0
information	0	0	1	1	1	0	1	0

Статистический подход к оценки близости слов

- Необходимо определить 3 вещи:
 - -совместная встречаемость
 - -вес термина
 - -близость между векторами

Совместная встречаемость

- Проблема разреженности векторов
- Идея решения: использовать только слова, входящие в синтаксические отношения

	subj-of, absorb	subj-of, adapt	subj-of, behave	 pobj-of, inside	pobj-of, into	 nmod-of, abnormality	nmod-of, anemia	nmod-of, architecture	 obj-of, attack	obj-of, call	obj-of, come from	obj-of, decorate	 nmod, bacteria	nmod, body	nmod, bone marrow	
cell	1	1	1	16	30	3	8	1	6	11	3	2	3	2	2	L

Вес термина

Manning and Schuetze (1999)

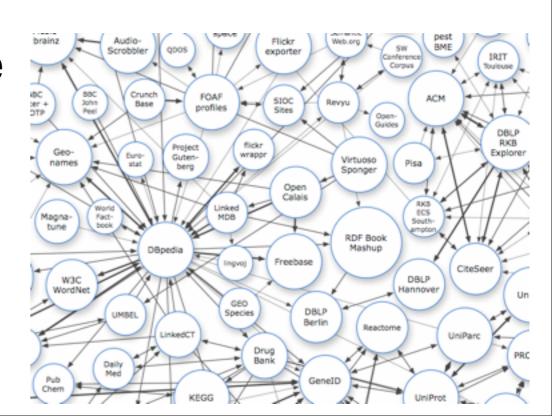
$$\begin{aligned} \operatorname{assoc}_{\operatorname{prob}}(w,f) &= P(f|w) \\ \operatorname{assoc}_{\operatorname{PMI}}(w,f) &= \log_2 \frac{P(w,f)}{P(w)P(f)} \\ \operatorname{assoc}_{\operatorname{Lin}}(w,f) &= \log_2 \frac{P(w,f)}{P(w)P(r|w)P(w'|w)} \\ \operatorname{assoc}_{\operatorname{t-test}}(w,f) &= \frac{P(w,f) - P(w)P(f)}{\sqrt{P(f)P(w)}} \end{aligned}$$

Близость между векторами

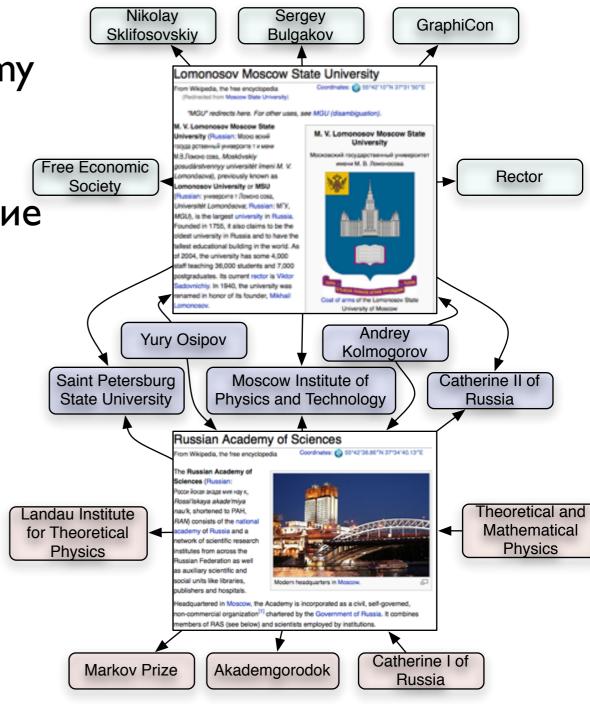
$$sim_{cosine}(\vec{v}, \vec{w}) = \frac{\vec{v} \cdot \vec{w}}{|\vec{v}| |\vec{w}|} = \frac{\sum_{i=1}^{N} v_i \times w_i}{\sqrt{\sum_{i=1}^{N} v_i^2} \sqrt{\sum_{i=1}^{N} w_i^2}}
sim_{Jaccard}(\vec{v}, \vec{w}) = \frac{\sum_{i=1}^{N} \min(v_i, w_i)}{\sum_{i=1}^{N} \max(v_i, w_i)}
sim_{Dice}(\vec{v}, \vec{w}) = \frac{2 \times \sum_{i=1}^{N} \min(v_i, w_i)}{\sum_{i=1}^{N} (v_i + w_i)}
sim_{JS}(\vec{v}||\vec{w}) = D(\vec{v}|\frac{\vec{v} + \vec{w}}{2}) + D(\vec{w}|\frac{\vec{v} + \vec{w}}{2})$$

Оценка качества

- Внутренняя
 - -Коэффициент корреляции между
 - результатами алгоритма и
 - значениями, поставленными людьми
- Внешняя
 - –Встроить в приложение
 - Поиск опечаток
 - Поиск плагиата
 - Разрешение лексической многозначности

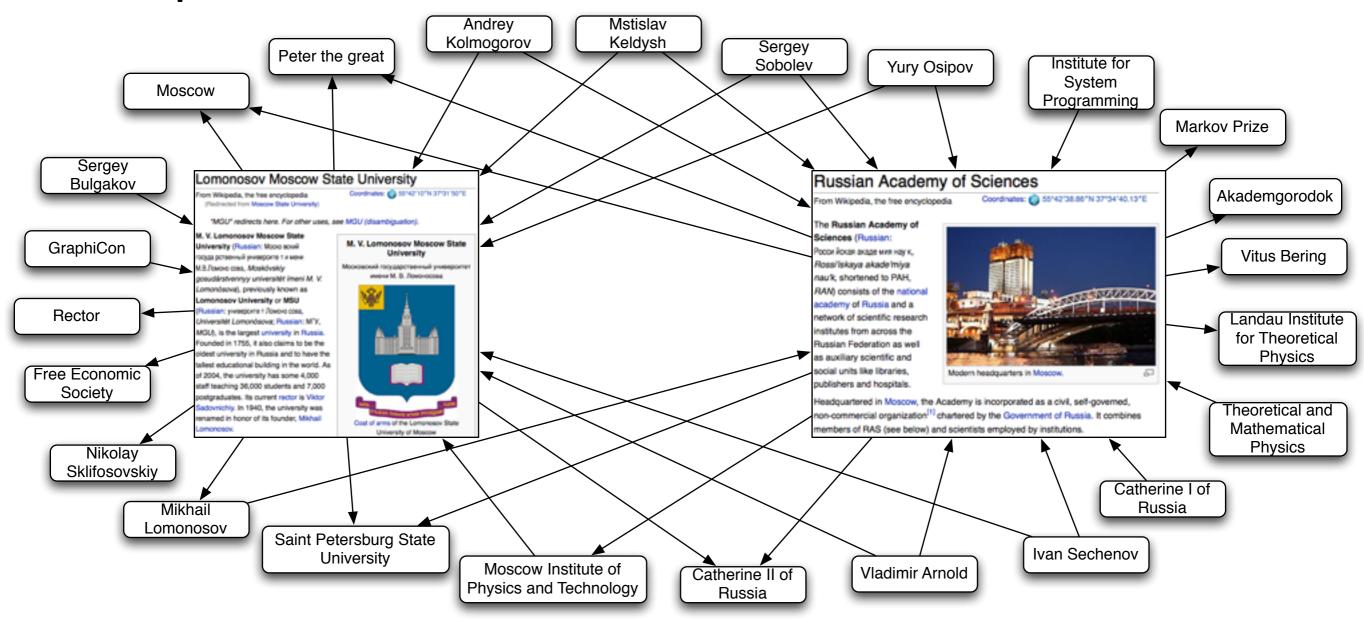


Современные направления


- Использование контента, созданного пользователями
 - -Википедия и вики-энциклопедии
 - Mihalcea and Csomai 2007
 - Milne and Witten 2008
 - Texterra (ИСП РАН)
 - -Открытые данные, связанные ссылками (Linked open data)
 - Melli and Ester 2010
 - Rusu, Fortuna, Mladenic 2011

Википедия

- Каждая статья содержит:
 - В заголовке: термин (Russian Academy of Sciences)
 - В теле: описание значения термина
 - Гиперссылки на статьи, описывающие значения используемых терминов
- Специальные страницы:
 - списки значений многозначных терминов
 - синонимы
 - категории
 - ит.д.
- Сеть документов Википедии:
 - ullet безмасштабная $P(k) \sim k^{-\gamma}$
 - структурно отличается от семантических сетей и тезаурусов, созданных экспертами



Семантическая близость

• Нормализованное количество общих соседей

• Близкие концепции чаще встречаются вместе

Texterra

- Система для семантического анализа текстов, разработанная в ИСП РАН
- В качестве основного (одного из) источника знаний используется Википедия
- Поддерживает обработку нескольких **ЯЗЫКОВ**

Введение в обработку текстов 🗐 ВМК МГУ

Texterra

Named Entity **Event Extraction** Recognition and (Acquisitions, Classification Natural disasters, **Term Detection Aspect Extraction** (NERC) etc.) Common Sense Part-of-speech **Keyword Extraction** Stemming Tagging (social tagging tagging) **Probabilistic** Sentence Detection **Sentiment Analysis** Summarization parsing **Topic Extractions** Paragraph (probabilistic topic Relation Extratinon **Tokenization** Detection modeling) Coreference Word Sense Shallow parsing Lemmatization Resolution Disambiguation (Chunking)

Russian

Korean

English

Введение в обработку текстов

Texterra REST API

- https://api.at.ispras.ru
- Alpha версия

Clear Example Text Example Tweet Example Review

The United States launches on Tuesday a new \$100 bill that comes with, for the iconic greenback, a new touch of color, as well as special features to foil counterfeiters. In its first remake since 1996, the \$100, which takes a key role in cash transactions for everyone.

Key Concept

Disambiguation

Sentiment Analysis

Aspect Extraction

Tweet Normalization

Result

The United States launches on Tuesday a new \$100 bill that comes with, for the iconic greenback, a new touch of color, as well as special features to foil counterfeiters. In its first remake since 1996, the \$100, which takes a key role in cash transactions for everyone.

Description

List of found concepts

- United States
- United States one hundred-dollar bill
- United States Note
- Counterfeit
- Remake

Заключение

- Лексическая семантика изучает значения отдельных слов
- WordNet содержит различные отношения между словами, синсеты задают значения СЛОВ
- Разрешение лексической многозначности
 - задача определения значений слов
- Семантическая близость между словами полезный инструмент для монгих приложений

Что не было рассказано

- Композиционная семантика
- Представление знаний
- Семантические поля и семантические роли
 - -PropBank
 - -FrameNet
- Задача разграничения значений
- Автоматическое извлечение отношений между словами

Следующая лекция

- Вопросно-ответные системы
- Автоматическое реферирование