Основы обработки текстов

Лекция 4

Статистические методы в обработки текстов. Поиск словосочетаний

Словосочетания/коллокации

- Для данной лекции **Словосочетания** = **Коллокации** = **Фразеологические обороты** цепочки слов состоящие из двух или более элементов, имеющее признаки синтаксически и семантически целостной единицы, в котором выбор одного из компонентов осуществляется по смыслу, а выбор второго зависит от выбора первого
- Примеры:
 - Крепкий чай (не "сильный чай")
 - Схема Бернулли (сравнить значения со значениями "Схема" и "Бернулли")

Приложения

- Сравнения корпусов текстов
 - –кластеризация документов в информационном поиске
 - —Поиск плагиата
- Синтаксический разбор
- Генерация естественного языка
- Машинный перевод
- Выделение ключевых слов (терминов)

Выделение словосочетаний

Поиск кандидатов

- Основная предпосылка
 - Если два (или более) слова встречаются вместе часто, то, вероятно, это словосочетание
- Инструменты
 - **–**Частота
 - –Частота и фильтрация по тэгам
 - -Математическое ожидание и дисперсия

Частота

- Подсчет частоты n-грам
 - -Последовательности из n слов
- Выбрать наиболее встречающиеся
- Результат
 - –Kopпyc: New York Times
 - August-November, 1990
 - -Результат не интересен

$C(w^1 w^2)$	w^1	w^2
80871	of	the
58841	in	the
26430	to	the
21842	on	the
21839	for	the
18568	and	the
16121	that	the
15630	at	the
15494	to	be
13899	in	a
13689	of	a
13361	by	the
13183	with	the
12622	from	the
11428	New	York
10007	he	said
9775	as	a
9231	is	a
8753	has	been
8573	for	a

Частота с фильтрацией по тэгам

- Подсчет частоты n-грам
- определить части речи
- фильтрация кандидатов по шаблонам для частей речи
- выбрать наиболее встречающиеся

Tag Pattern	Example
AN	linear function
NN	regression coefficients
AAN	Gaussian random variable
ANN	cumulative distribution function
NAN	mean squared error
NNN	class probability function
NPN	degrees of freedom

Частота с фильтрацией по тэгам

$C(w^1\;w^2)$	w^1	w^2	Tag Pattern
11487	New	York	A N
7261	United	States	AN
5412	Los	Angeles	NN
3301	last	year	AN
3191	Saudi	Arabia	NN
2699	last	week	AN
2514	vice	president	A N
2378	Persian	Gulf	A N
2161	San	Francisco	NN
2106	President	Bush	NN
2001	Middle	East	A N
1942	Saddam	Hussein	NN
1867	Soviet	Union	AN
1850	White	House	AN
1633	United	Nations	AN
1337	York	City	NN
1328	oil	prices	NN
1210	next	year	AN
1074	chief	executive	AN
1073	real	estate	AN

Мат. ожидание и дисперсия

- Часто устойчивые пары слов находятся не рядом
 - -Пример
 - She knocked on his door
 - They knocked on the door
 - a man knocked on the metal front door
 - Важно это понимать, например при генерации текстов

Мат. ожидание и дисперсия

- Техника
 - -Рассмотрим все пары слов в некотором окне
 - Посчитаем расстояние между словами
- Меры
 - -Мат. ожидание (возможно отрицательное)
 - Показывает на сколько часто два слова встречаются вместе
 - Дисперсия (среднеквадратичное отклонение)
 - Вариабельность позиции

Мат. ожидание и дисперсия

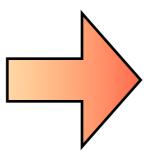
She knocked on his door

They knocked on the door

A man knocked on the metal front door

$$\overline{d} = \frac{\sum_{i=1}^{n} d_i}{n}$$

$$s^2 = \frac{\sum_{i=1}^{n} (d_i - \overline{d})^2}{n-1}$$



Пример: knocked ... door

$$\overline{d} = \frac{1}{3}(3+3+5) \approx 3.67$$

$$s = \sqrt{\frac{1}{2}((3 - 3.67)^2 + (3 - 3.67)^2 + (5 - 3.67)^2)}$$

$$\approx 1.15$$

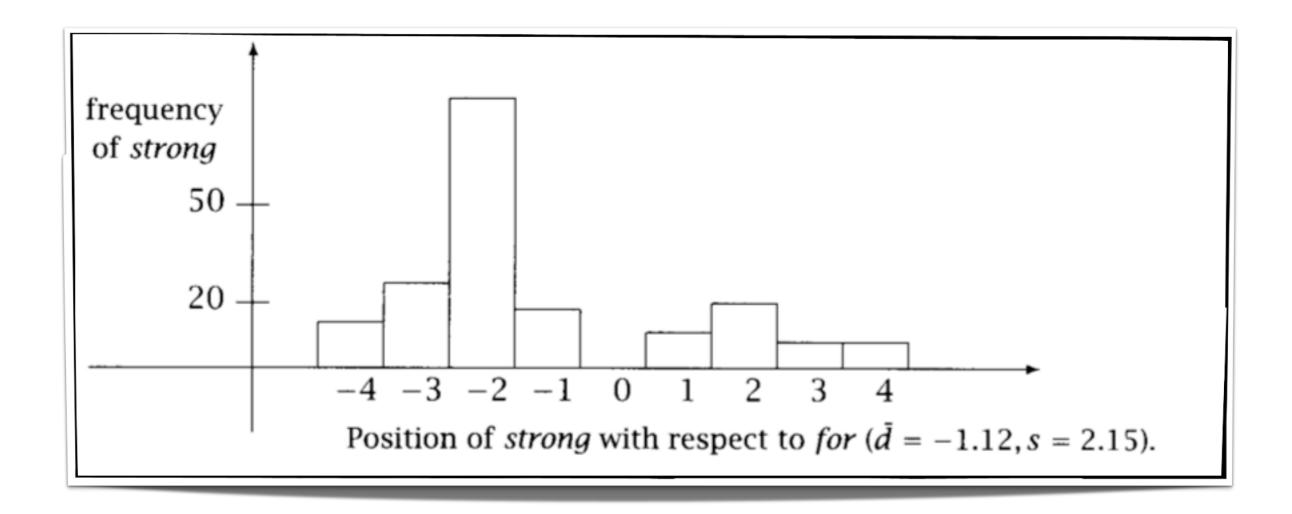
 $n\,$ - число раз, когда два слова встретились

 d_i - смещение между словами

 \overline{d} - выборочное среднее смещений

Гисторамма

- Пример: strong ... for
 - –"strong [business] support for"



Пример

S	đ	Count	Word 1	Word 2
0.43	0.97	11657	New	York
0.48	1.83	24	previous	games
0.15	2.98	46	minus	points
0.49	3.87	131	hundreds	dollars
4.03	0.44	36	editorial	Atlanta
4.03	0.00	78	ring	New
3.96	0.19	119	point	hundredth
3.96	0.29	106	subscribers	by
1.07	1.45	80	strong	support
1.13	2.57	7	powerful	organizations
1.01	2.00	112	Richard	Nixon
1.05	0.00	10	Garrison	said

 Большое среднеквадратичное отклонение показывает, что сочетание не очень интересное

Проверка статистических гипотез

Проверка статистических гипотез

• Основная идея: слова словосочетания встречаются вместе значительно чаще чем просто случайно

• Инструменты:

- t-критерий Стьюдента (t-test)
- Критерий согласия Пирсона (Хи-квадрат)
- Критерий отношения правдоподобия (Likelihood ratio test)

Нулевая гипотеза

- Но-слова встречаются независимо
 - $-P(w_1,w_2)=P(w_1)P(w_2)$
- Какова вероятность получить словосочетание w_1w_2 , при условии что гипотеза верна?
 - $-p=P(w_1w_2|H_0)$

Уровень значимости. p-value

- Уровень значимости (significance level)
 - —Допустимая вероятность отвергнуть гипотезу Н₀ при условие что она верна. (совершить ошибку 1-го рода)
 - -Обозначают α
 - –Часто в качестве уровня значимости выбирают α = 0.05
- p-value (достигаемый уровень значимости)
 - вероятность получить для данной вероятностной модели
 распределения значений случайной величины такое же или более
 экстремальное значение статистики, по сравнению с ранее
 наблюдаемым, при условии, что нулевая гипотеза верна
 - –Чем меньше p-value тем лучше

Ошибки 1-го и 2-рода

• Возможны 4 ситуации

	Принимается Н₀	Принимается Н1
Верна гипотеза Но	OK	Ошибка 1-го рода
Верна альтернатива Н1	Ошибка 2-го рода	OK

 Цена ошибок 1-го и 2-го рода различна и ее сложно оценить. В области анализа данных обычно фиксируют вероятность ошибки 1-го рода и минимизируют вероятность ошибки 2го рода.

Т-критерий Стьюдента

• Т-статистика

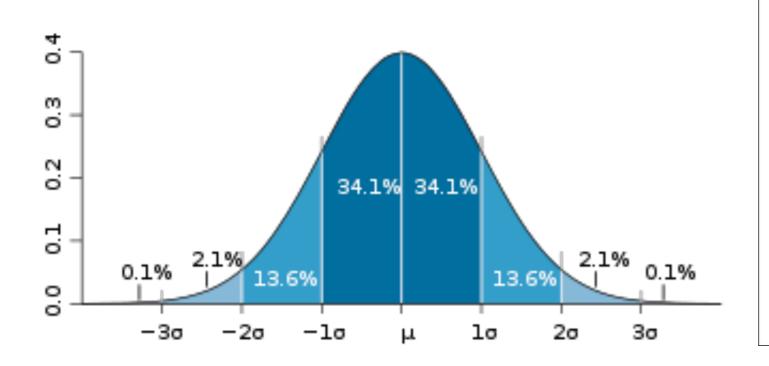
$$t=rac{\overline{x}-\mu}{\sqrt{rac{s^2}{N}}}$$
 p -ожидаемое мат. ожидание \overline{x} -выборочное среднее s^2 -выборочная дисперсия N -размер выборки

• Распределение Стьюдента (стремится к нормальному при больших N)

	Р	0.05	0.025	0.01	0.005	0.001	0.0005
	C	90%	95%	98%	99%	99.8%	99.9%
d.f.	1	6.314	12.71	31.82	63.66	318.3	636.6
	10	1.812	2.228	2.764	3.169	4.144	4.587
	20	1.725	2.086	2.528	2.845	3.552	3.850
(z)	∞	1.645	1.960	2.326	2.576	3.091	3.291

Т-критерий Стьюдента

- Разработан Уильямом Госсетом для оценки качества пива Гиннесс
- Рассмотрим распределение выборочного среднего у всевозможных выборок длины n
- По ЦПТ, при больших n:



9.5. Центральная предельная теорема (теорема Ляпунова)

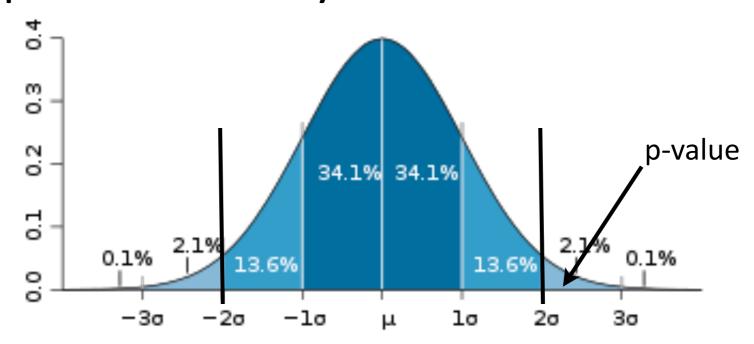
Группа теорем, касающихся предельных законов распределения суммы случайных величин, носит общее название *центральной* предельной теоремы. Рассмотрим ее классическую формулировку.

Теорема: Пусть ξ_1 , ξ_2 , ..., ξ_n , ... – бесконечная последовательность независимых одинаково распределенных случайных величин, имеющих конечные математическое ожидание a и дисперсию σ^2 . Тогда при $n\to\infty$ функция распределения $\eta_n=(S_n-an)/(\sigma\sqrt{n})$, где $S_n=\sum_{i=1}^n \xi_i$, будет стремиться к нормальному закону с нулевым математическим ожиданием и средним квадратическим отклонением, равным единице, т. е.

$$F_{\eta_n}(x) \xrightarrow[n \to \infty]{} F_N(x, 0, 1). \tag{9.15}$$

Т-критерий Стьюдента

- Если для наших данных наблюдаемое выборочное среднее сильно отклоняется от ожидаемого при нулевой гипотезе, то с вероятностью р гипотеза не верна
- α ошибка первого рода
- p < α отвергаем гипотезу



Т-критерий. Пример

- Предположим, что средний рост мужчин в популяции равен 158 см
- Для выборки из 200 мужчин

$$\overline{x} = 169, s^2 = 2600$$

• Тогда
$$t = \frac{169 - 158}{\sqrt{\frac{2600}{200}}} = 3.08$$

- Для α=0.005:
- 3.05>2.576

0.05 0.025 0.01 0.005 0.001 0.0005 P 90% 95% 98% 99% 99.8% 99.9% d.f. 6.314 63.66 12.71 31.82 318.3 636.6 1.812 2.764 3.169 2.228 4.144 4.587 10 3.850 1.725 2.086 2.528 2.845 3.552 (z)1.645 2.326 2.576 3.091 1.960 3.291

• отвергаем гипотезу

Т-критерий для словосочетаний

- Пусть нулевая гипотеза верна
- Рассмотрим процесс случайной генерации биграмм, если встретили биграмму w₁w₂ (с вероятностью р) генерируем 1, в противном случае 0 (схема Бернулли)
 биномиальное распределени
- мат. ожидание = р
- дисперсия = p(1-p) р при малых р

$$\approx$$

$$t=rac{\overline{x}-\mu}{\sqrt{rac{s^2}{N}}}$$
 $\qquad \begin{array}{l} \mu = ext{H}_0 = ext{P}(ext{w}_1) ext{P}(ext{w}_2) \ \overline{x} \ ext{-} ext{отношение w}_1 ext{w}_2 ext{ к общему кол-ву биргамм} \ s^2 ext{-} ext{отношение w}_1 ext{w}_2 ext{ к общему кол-ву биргамм} \ N ext{-} ext{общее количество биграмм} \end{array}$

Пример

• new companies (встретилась 8 раз)

$$P(new) = \frac{15828}{14307668}$$
 $P(companies) = \frac{4675}{14307668}$

$$H_0: P(new\ companies) = P(new)P(companies) = \frac{15828}{14307668} \times \frac{4675}{14307668} \approx 3.615 \times 10^{-7}$$

$$\overline{x} = \frac{8}{14307668} \approx 5.591 \times 10^{-7}$$

$$t = \frac{\overline{x} - \mu}{\sqrt{\frac{s^2}{N}}} \approx \frac{5.591 \times 10^{-7} - 3.615 \times 10^{-7}}{\sqrt{\frac{5.591 \times 10^{-7}}{14307668}}} \approx 0.999932$$

• не можем отвергнуть гипотезу

Для корпуса

<u>t</u>	$C(w^1)$	$C(w^2)$	$C(w^1 w^2)$	w^1	$ w^2 $
4.4721	42	20	20	Ayatollah	Ruhollah
4.4721	41	27	20	Bette	Midler
4.4720	30	117	20	Agatha	Christie
4.4720	77	59	20	videocassette	recorder
4.4720	24	320	20	unsalted	butter
2.3714	14907	9017	20	first	made
2.2446	13484	10570	20	over	many
1.3685	14734	13478	20	into	them
1.2176	14093	14776	20	like	people
0.8036	15019	15629	20	time	last

Хи-квадрат

- Сравнить наблюдаемые частоты в корпусе с ожидаемыми частотами при верной гипотезе о независимости
- Если различие большое отвергаем гипотезу
- (Выборка должна быть большая)

х² - общая формула

• Меры:

- —E_{ij} = ожидаемое кол-во коллокаций
- —O_{ij} = наблюдаемое кол-во коллокаций

$$\chi^2 = \sum_{i,j} \frac{O_{ij} - E_{ij}}{E_{ij}}$$

• Результат

- -Смотрим число в таблице для распределения χ^2
 - если число в таблице меньше, то отвергаем гипотезу

χ^2 - для биграмм

		1
	$w_1 = new$	$w_1 \neq new$
$\overline{w_2} = companies$	8	4667
	(new companies)	(e.g., old companies)
$\overline{w_2} \neq companies$	15820	14287181
	(e.g., new machines)	(e.g., old machines)

$$\chi^2 = \frac{N(O_{11}O_{22} - O_{12}O_{21})^2}{(O_{11} + O_{12})(O_{11} + O_{21})(O_{12} + O_{22})(O_{21} + O_{22})}$$

$$\frac{14307668(8\times14287181-4667\times15820)^2}{(8+4667)(8+15820)(4667+14287181)(15820+14287181)}\approx 1.55$$

	P	0.99	0.95	0.10	0.05	0.01	0.005	0.001
d.f.	1	0.00016	0.0039	2.71	3.84	6.63	7.88	10.83
	2	0.020	0.10	4.60	5.99	9.21	10.60	13.82
	3	0.115	0.35	6.25	7.81	11.34	12.84	16.27
	4	0.297	0.71	7.78	9.49	13.28	14.86	18.47
10	00	70.06	77.93	118.5	124.3	135.8	140.2	149.4

Критерий отношения правдоподобия

- На сколько более правдоподобна одна гипотеза, чем другая
- H₁: $P(w_2|w_1) = p = P(w_2|\neg w_1)$
- H2: $P(w_2|w_1) = p_1 \neq p_2 = P(w_2|\neg w_1)$ $(p_1 >> p_2)$

Критерий отношения правдоподобия

	H ₁	H ₂
$P(w_2 w_1)$	$p = \frac{c_2}{N}$	$p_{1} = \frac{c_{12}}{c_{1}}$
$P(w_2 \neg w_1)$	$p = \frac{c_2}{N}$	$p_2 = \frac{c_2 - c_{12}}{N - c_1}$

• Так же как в t-критерии предполагаем схему Бернулли и биномиальное распределение

$$b(k; n, x) = C_n^k x^k (1 - x)^{n-k}$$

	H ₁	H ₂
c ₁₂ из c ₁ биграм-это w ₁ w ₂	$b(c_{12};c_1,p)$	$b(c_{12}; c_1, p_1)$
c ₂ -c ₁₂ из N-c ₁ биграм-это не w ₁ w ₂	$b(c_2 - c_{12}; N - c_1, p)$	$b(c_2-c_{12};N-c_1,p_2)$

$$L(H_1) = b(c_{12}; c_1, p)b(c_2 - c_{12}; N - c_1, p)$$

$$L(H_2) = b(c_{12}; c_1, p_1)b(c_2 - c_{12}; N - c_1, p_2)$$

Отношение правдободобия

$$\log \lambda = \log \frac{L(H_1)}{L(H_2)}$$

$$= \log \frac{b(c_{12}, c_1, p)b(c_2 - c_{12}, N - c_1, p)}{b(c_{12}, c_1, p_1)b(c_2 - c_{12}, N - c_1, p_2)}$$

$$= \log L(c_{12}, c_1, p) + \log L(c_2 - c_{12}, N - c_1, p)$$

$$-\log L(c_{12}, c_1, p_1) - \log L(c_2 - c_{12}, N - c_1, p_2)$$

где
$$L(k, n, x) = x^k (1-x)^{n-k}$$

Результат для корпуса

$-2\log\lambda$	$C(w^1)$	$C(w^2)$	$C(w^1w^2)$	w^1	w^2
1291.42	12593	932	150	most	powerful
99.31	379	932	10	politically	powerful
82.96	932	934	10	powerful	computers
80.39	932	3424	13	powerful	force
57.27	932	291	6	powerful	symbol
51.66	932	40	4	powerful	lobbies
51.52	171	932	5	economically	powerful
51.05	932	43	4	powerful	magnet
50.83	4458	932	10	less	powerful
50.75	6252	932	11	very	powerful
49.36	932	2064	8	powerful	position
48.78	932	591	6	powerful	machines
47.42	932	2339	8	powerful	computer
43.23	932	16	3	powerful	magnets
43.10	932	396	5	powerful	chip
40.45	932	3694	8	powerful	men
36.36	932	47	3	powerful	486
36.15	932	268	4	powerful	neighbor
35.24	932	5245	8	powerful	political
34.15	932	3	2	powerful	cudgels
				-	0

• $-2log\lambda$ имеет распределение **\chi^2**

Проверка статистических гипотез для сравнения классификаторов

Сравнение классификаторов

- Пусть у нас есть два классификатора
 - Разработанный нами
 - State-of-the-Art решение

	F1
Наш	0,853
SotA	0,845

• Действительно ли наше решение лучше?

Сравнение классификаторов

• Посчитаем F1-меру на нескольких наборах данных

```
y1 = [0.81922220, 0.80076079, 0.89213162, 0.85617380, 0.84878412, 0.87187914, 0.88404899, 0.83593810, 0.89170907, 0.82974126]
y2 = [0.80006565, 0.81164693, 0.83667603, 0.83123125, 0.88698, 0.89964834, 0.80711508, 0.86260427, 0.84889595, 0.86098152]
```

- Какую нулевую гипотезу выбрать?
- Что можно сказать о распределениях?

Непараметрические тесты

- Когда нельзя сделать предположение о распределении случайной величины
 - Скошенные распределения
 - Мало данных для ЦПТ
- Используют непараметрические тесты
 - Знаковые критерии
 - Ранговые критерии
 - Перестановочные критерии

Вариационный ряд

- Пусть у нас есть выборка X_1, \dots, X_n
- Упорядочим ее по не убыванию

$$X_{(1)} \leq \ldots < X_{(k_1)} = \ldots = X_{(k_2)} < \cdots \leq X_{(n)}$$
 Связка размера k2-k1+1

- Ранг наблюдения :
 - –Если X_i не в связке, то $rank(X_i)=r, X_i=X_{(r)}$
 - –Если Xв связке, $X_{(k_1)}=\ldots$ = $X_{(k_2)}$

$$rank(X_i) = \frac{k_1 + k_2}{2}$$

Критерий Уилкоксона

- Ранговый критерий
- Нулевая гипотеза $H_0: med(X_1-X_2)=0$
- Альтернатива $H_1 : med(X_1 X_2) \neq 0$
- Считаем статистику

$$W(X_1^n, X_2^n) = \sum_{i=1}^n rank(|X_{1i} - X_{2i}|) * sign(X_{1i} - X_{2i})$$

- Нулевое распределение табличное
 - при справедливости нулевой гипотезы, каждый из рангов в нашей выборке мог с одинаковой вероятностью реализоваться с любым знаком: и с «+», и с «-». Таким образом, мы получаем 2 в степени п вариантов распределения знаков по рангам. Переберём все эти варианты, и на каждом из этих вариантов знаков посчитаем значение статистики.

Пример

```
from scipy.stats import wilcoxon, rankdata
import numpy as np
y1 = [0.81922220, 0.80076079, 0.89213162, 0.85617380, 0.84878412,
      0.87187914, 0.88404899, 0.83593810, 0.89170907, 0.829741261
y2 = [0.80006565, 0.81164693, 0.83667603, 0.836123125, 0.88698,
      0.89964834, 0.80711508, 0.86260427, 0.84889595, 0.86098152]
np.mean(y1)
0.853038909
np.mean(y2)
0.8450736895000001
rankdata(np.concatenate((y1,y2)))
array([ 5., 2., 19., 12., 10., 15., 16., 7., 18., 6., 1., 4., 9.,
        8., 17., 20., 3., 14., 11., 13.])
wilcoxon(y1,y2,alternative='greater')
WilcoxonResult(statistic=32.0, pvalue=0.3232311013320848)
```

Проблемы использования статистической проверки гипотез

- Заблуждения о p-value
- Множественная проверка гипотез

Заблуждения о p-value

- p-value это не вероятность того, что верна основная гипотеза Н₀
 - p-value так же не является вероятностью того, что неверна альтернатива Н₁
 - Статистические критерии вообще не умеют оценивать такие вероятности.
- Большое значение p-value не означает что Н₀ верна
 - Возможны различные объяснения большого значение p-value:
 - Гипотеза Но верна
 - Гипотеза Н₀ не верна, но размер выборки недостаточно большой. Большее число экспериментов позволят отвергнуть Н₀
 - Гипотеза Но не верна, но мы применяем неправильный критерий

Множественная проверка гипотез

```
y1 = 0.8 + 0.1*np.random.rand(10)
while p > 0.05:
    y2 = 0.8 + 0.1*np.random.rand(10)
    w = wilcoxon(y1,y2,alternative='greater')
    u, p = w
    print(w)
WilcoxonResult(statistic=42.0, pvalue=0.06970698666076602)
WilcoxonResult(statistic=39.0, pvalue=0.12056068413870913)
WilcoxonResult(statistic=41.0, pvalue=0.08440347677825405)
WilcoxonResult(statistic=40.0, pvalue=0.10131080385615598)
WilcoxonResult(statistic=36.0, pvalue=0.19313536018324134)
WilcoxonResult(statistic=29.0, pvalue=0.4392408717164356)
WilcoxonResult(statistic=46.0, pvalue=0.02966805994045431)
```

Ура! Мой классификатор значимо лучше!

Для самостоятельного изучения

- Решение проблемы множественной проверки гипотез
- Доверительные интервалы
 - –сравнение классификаторов с помощью доверительных интервалов

Полезная информация

Илья Козлов: Проверка статистических гипотез для сравнения алгоритмов классификации https://www.youtube.com/watch?v=6cnF8lQRYN0

Заключение

- Аппарат проверки статистических гипотез должен знать любой человек, занимающийся анализом данных
- В обработке текстов методы проверки статистических гипотез можно применять для поиска словосочетаний применяются
- Одним из наиболее важных применений является сравнение моделей машинного обучения

Следующая лекция

- Векторные представления слов
 - –(Майоров Владимир Дмитриевич)